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ABSTRACT

Annexin A2 is a multicompartmental protein that orchestrates a spec-
trum of dynamic membrane-related events. At cell surfaces, A2 forms the
(A2•S100A10)2 complex which accelerates tissue plasminogen activa-
tor�dependent activation of the fibrinolytic protease, plasmin. Anti-A2
antibodies are associated with clinical thrombosis in antiphospholipid
syndrome, whereas overexpression of A2 promotes hyperfibrinolytic bleed-
ing in acute promyelocytic leukemia. A2 is upregulated in hypoxic tissues,
and mice deficient in A2 are resistant to hypoxia-related retinal neovas-
cularization in a model of diabetic retinopathy. Within the cell, A2 regu-
lates membrane fusion processes involved in the secretion of pre-packaged,
ultra-large molecules. In stimulated dendritic cells, A2 maintains lyso-
somal membrane integrity, thereby modulating inflammasome activation
and cytokine secretion. Together, these findings suggest an emerging,
multifaceted role for annexin A2 in human health and disease. The
author’s work has been inspired by numerous colleagues and mentors,
and by the author’s grandfather, and former ACCA member, Dr.
J. Burns Amberson.

INTRODUCTION

The annexins constitute a family of more than 60 highly conserved,
Ca2�-regulated, phospholipid-binding proteins that have existed for
more than 500 million years (1). Humans express 12 annexins (annex-
ins A1-A11 and A13), and, among these, annexin A2 (A2) is arguably
the most extensively investigated with respect to health and disease
(2,3). Typical annexins consist of a 30- to 35-kilodalton “core” domain
containing four alpha helical, Ca2�-binding “annexin” repeats, and a
more hydrophilic amino-terminal “tail” domain, which is essentially
unique to each family member. Through their capacity for Ca2�-de-
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pendent membrane binding, annexins add or “annex” proteins to mem-
brane surfaces and also facilitate membrane fusion events. These
properties allow the annexins to fulfill a wide variety of intra- and
extracellular functions, and the term “annexinopathy” has come to
reflect their newly recognized roles in human pathophysiology (4).

ANNEXIN A2 AND ITS PARTNER PROTEINS

In the last 20 years, it has become increasingly clear that the cell
surface is a major site for protease assembly and activity (5,6). In the
1980s, however, the concept that human endothelial cells could assem-
ble components of the fibrinolytic system was novel. Our research
began with the observation that human endothelial cells reacted spe-
cifically with antibodies directed against plasminogen and its tissue
activator (tissue plasminogen activator, tPA) (7,8). Ligand blotting of a
plasma membrane fraction isolated from human endothelial cell ho-
mogenates revealed that both plasminogen and tPA interacted specif-
ically with a 36-kilodalton protein expressed on the cell surface (9). The
purified protein bound both plasminogen and tPA in a dose-dependent
and high-affinity manner, and amino acid sequencing identified this
cell surface protein as annexin A2 (10). We now know that A2 is
synthesized by endothelial cells, monocytes, macrophages, dendritic
cells, trophoblast cells, epithelial cells, and some tumor cells, and can
exist either as a soluble monomer in the cytoplasm, or as a complex
associated with cellular membranes (11,12).

The S100 family consists of low molecular weight (9- to 14-kilodal-
ton) dimeric proteins that undergo structural shifts in response to
changes in Ca�� concentration, and often interact with annexins (13).
By forming a heterotetrameric complex with protein S100A10, A2
increases its sensitivity to Ca�� and its ability to bind to cellular
membranes at resting intracellular Ca�� concentrations (14).
S100A10 is unique among the family of S100 proteins in that it exists
in a permanent “calcium-on” state, and does not require a Ca��-
induced conformational change to associate with annexin A2 (15).
Crystallographic studies have revealed that, in the tetrameric
(A2•S100A10)2 complex, two copies of S100A10 are linked non-cova-
lently to create a molecular groove, which is occupied by the �-helical
N-terminal 14 amino acids of A2. In endothelial cells, S100A10 is
stabilized by this interaction with A2, which masks a polyubiquitina-
tion site that would otherwise destine unpartnered S100A10 for deg-
radation within the proteasome (16). Three additional family mem-
bers, S100A4, S100A6, and S100A11, have been reported to bind A2 in
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vitro, but the potential physiologic consequences of these interactions
are unknown (17).

THE ANNEXIN A2 COMPLEX ON THE CELL SURFACE

It is now well-established that the (A2•S100A10)2 tetramer serves
as an assembly site for two fibrinolytic proteins, plasminogen and tPA,
on the endothelial cell surface (2,3) (Figure 1). This assembly promotes
plasmin generation (18�21). Upon hydrolysis of its R560-V561 peptide
bond by tPA, the zymogen plasminogen is transformed into the prin-
cipal fibrinolytic protease, plasmin (22�24). The catalytic efficiency of
tPA-dependent plasminogen activation increases by 10- to 100-fold in
the presence of A2; although significant, this increment is less dra-
matic than the 500-fold acceleration provided in the presence of fibrin
(22). It is hypothesized that, whereas classical fibrinolysis serves to
dissolve established intravascular thrombi, the A2-based system pro-
vides constitutive surveillance that allows for clearance of fibrin form-
ing on the blood vessel surface in response to more subtle forms of
vascular injury.

FIG. 1. Some biologic functions of annexin A2. At the cell surface, annexin A2 binds
to protein S100A10 (p11). The heterotetrameric complex associates with the plasma
membrane through calcium linkages (shown in red) with membrane phospholipid, and
supports the assembly of plasminogen (Plg) and tissue plasminogen activator (tPA),
leading to the efficient generation of the fibrinolytic serine protease, plasmin (PN).
Plasmin enables fibrinolysis and angiogenesis. Within the cell, the (annexin A2-p11)2

complex participates in repair of injured lysosomal membranes (L) by “annexing” mem-
brane from cytoplasmic vesicles (V).
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Expression of the (A2•S100A10)2 complex on the endothelial cell
surface is a dynamic process. Translocation of the complex from the
cytoplasm to the outer leaflet of the endothelial cell membrane appears
to be a key regulatory step in vascular fibrinolysis, but the precise
translocation mechanism is unknown (25,26). Increased cell surface
expression of the heterotetramer occurs within minutes to hours of
heat stress, receptor-mediated thrombin stimulation, or hypoxia
(27�29), and requires both src kinase-mediated phosphorylation of Y23

and expression of S100A10 (28). In addition, the level of expression of
the complex on the cell surface is regulated by intracellular protein
kinase C, which phosphorylates S11 or S25 residues within the N-ter-
minal tail domain of A2, thereby dissociating the (A2•S100A10)2 com-
plex, and preventing further translocation to the cell surface (30,31).
Serine phosphorylation of A2 by protein kinase C (PKC) appears to be
triggered by cell surface plasmin, which cleaves A2 and activates
toll-like receptor 4. This negative feedback mechanism may allow
plasmin to limit its own activation.

THE ANNEXIN A2 COMPLEX IN HEMOSTASIS

Several animal studies support the hypothesis that annexin A2
regulates hemostasis in vivo. First, Anxa2�/� mice, while displaying
uncompromised development, fertility, and lifespan, accumulate fibrin
in both intra- and extravascular locations within the lungs, spleen,
small intestine, liver, and kidney (32) Second, experimental injury to
the carotid artery leads to a significant increase in thrombotic occlu-
sion in Anxa2�/� versus Anxa2�/� mice (32), and S100a10�/� mice
also display increased vascular fibrin and reduced clearance of thrombi
(33). Third, Anxa2�/� microvascular endothelial cells fail to support
tPA-dependent plasmin generation (32). Fourth, in mice with diet-
induced hyperhomocysteinemia, homocysteine derivatizes A2 and
blocks its ability to bind tPA and generate plasmin, leading to fibrin
accumulation and deficits in angiogenic potential (34,35). Fifth, A2
alone or in combination with tPA enhances vascular patency and
reduces infarct size in several rodent models of stroke (36�40).

These results are reflected in recent observations in humans. In
antiphospholipid syndrome and in a cohort of patients with cerebral
venous thrombosis, high-titer anti-A2 autoantibodies are prevalent
and correlate with major thrombosis (41�45), suggesting that cell
surface A2 represents a prominent auto-antibody target associated
with a thrombosis (46). In children with sickle cell disease, in addition,
single nucleotide polymorphisms in the ANXA2 gene are associated
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with increased risk of stroke (47,48), whereas additional ANXA2 SNPs
have been associated with elevated risk of avascular necrosis of bone
(osteonecrosis) (49).

In acute promyelocytic leukemia, which, conversely, is associated
with life-threatening hemorrhage at the time of presentation (50),
there is typically robust expression of A2 in leukemic blast cells (51).
The resulting coagulopathy appears to reflect a combination of dissem-
inated intravascular coagulation and hyperfibrinolysis, the latter evi-
denced by elevated fibrin degradation products, depletion of plasma
fibrinogen, and consumption of alpha2-antiplasmin (51). In cultured
acute promyelocytic leukemia�like cells, elevated steady state levels
of A2 mRNA returned to normal after treatment with the therapeutic
differentiating agent all-trans retinoic acid (51). Follow-up studies
have confirmed these findings and shown that S100A10 is also ele-
vated in these cells (52,53).

ANNEXIN A2 IN PROLIFERATIVE RETINAL ANGIOPATHY

In several models of stimulated postnatal angiogenesis, Anxa2�/�

mice have shown a diminished ability to form new blood vessels (32). In
addition, wild-type mice with diet-induced hyperhomocysteinemia dis-
play impaired corneal neoangiogenesis due to covalent modification of
annexin A2 by homocysteine; in this case, angiogenesis can be restored
to normal with intravenous infusion of recombinant A2 (34). In the
oxygen-induced retinopathy model, which mimics many aspects of
human proliferative diabetic retinopathy (54), the typical vascular
proliferative response is blunted by approximately 50% in Anxa2�/�

mice (29). The data suggest that angiogenic impairment in the
Anxa2�/� mouse may reflect reduced vascular fibrinolysis and fibrin
accumulation around blood vessels.

INTRACELLULAR ANNEXIN A2

As a multicompartmental protein, annexin A2 is poised to fulfill a
range of intracellular membrane-related functions, including organi-
zation of specialized membrane microdomains, recruitment of periph-
eral membrane proteins, and regulation of membrane fusion and re-
pair events (11). Whereas heterotetrameric (A2•S100A10)2 resides on
the plasma membrane, monomeric annexin A2 is distributed through-
out the cytoplasm, but may transition to intracellular membranes in
response to signals, such as changes in Ca2� concentration, pH, or
membrane phospholipid composition, and the availability of ancillary
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S100 proteins, such as S100A10. How these multiple activities may
relate to human health and disease, however, is not yet clear.

Annexin A2 mediates a number of intracellular vesicular remodeling
events. Within its N-terminal domain, annexin A2 possesses a single
isoleucine-leucine pair motif (amino acids 6 and 7) that may function as
an endosomal targeting sequence (55), thus allowing A2 to bind to endo-
somes and possibly mediate their fusion (56,57). In addition, A2 is re-
quired for the biogenesis of multivesicular bodies, and is also a constit-
uent of exosomes that is frequently cited in proteomic studies (58,59).
Through interactions with soluble NSF (N-ethylmaleimide-sensitive fac-
tor) attachment receptor (SNARE) proteins, A2 participates in the reg-
ulated exocytosis of chromaffin granules (60,61), von Willebrand factor-
�containing Weibel-Palade bodies (62,63), lamellar body�containing
surfactant (64,65), and collagen VI multimers (66) from chromaffin,
endothelial, type II alveolar, and bronchial epithelial cells, respectively.

Through its ability to associate with lysosomal membranes (Figure 1),
A2 dysfunction is implicated in the inflammatory response associated
with aseptic arthritis, which occurs in 10% to 15% of patients undergoing
the several million joint replacement procedures performed each year in
the United States (67). In aseptic arthritis, wear debris particles are shed
into the joint space upon articulation of prosthetic joint surfaces. These
particles are endocytosed by inflammatory macrophages and dendritic
cells, and can induce lysosomal and endosomal membrane damage,
which is normally associated with recruitment of cytoplasmic annexin A2
to the lyso-endosomal membrane. In A2-deficient cells, lysosomal injury
leads to leakage of lysosomal cathepsins into the cytosol. Through an as
yet unknown mechanism, cytosolic cathepsins activate the nucleotide-
binding, leucine-rich, pyrin-containing-3 (NLRP3) inflammasome, lead-
ing to secretion of interleukin-1 and accelerated inflammation (68).

SUMMARY

The annexin A2 system serves a growing spectrum of biologic functions
both atop and beneath the plasma membrane. At the cell surface, the
(A2•S100A10)2 heterotetrameric system localizes plasmin activity and
promotes fibrinolysis, angiogenesis, and cell migration. Within intracel-
lular compartments, A2 appears to facilitate membrane organization,
fusion, and repair in an array of activities including endocytosis, exocy-
tosis, and lysosomal membrane repair. The physiologic consequences of
these activities are under active investigation, and the next several years
of annexin A2 research should offer exciting insights into human health
and disease.
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TRIBUTE

In the work described herein, I have been inspired by numerous
colleagues and mentors, including James Burns Amberson, Jr., MD
(Figure 2). He was born in 1890 in Waynesboro, Pennsylvania, at-
tended Lafayette College, and graduated from the Johns Hopkins
University School of Medicine in 1917. In 1918, while working with Dr.
E. W. Goodpasture in the pathology lab at Hopkins, Dr. Amberson
experienced an episode of hemoptysis, and the diagnosis of pulmonary
tuberculosis was made. He was admitted to Loomis Sanatorium in
upstate New York, where, after a year of recuperation, he became a

FIG. 2. James Burns Amberson, Jr., MD. Reprinted from Richards, D. L. “Presen-
tation of the Academy Plaque to James Burns Amberson, M.D.” Bull NY Acad Med
1970;46:663�5. Courtesy of the New York Academy of Medicine.
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staff physician, and ultimately Physician-in-Chief. In 1929, he ac-
cepted a faculty position at Columbia’s College of Physicians and
Surgeons, and began working at the Bellevue Chest Service. There, he
devoted the rest of his career to the study and treatment of tubercu-
losis, serving as Physician-in-Charge.

Dr. Amberson was elected to the American Clinical and Climatolog-
ical Association (ACCA) in 1922 at the age of 32, and served as its Vice
President in 1940 (69). His first publication in the ACCA Transactions
was entitled “Clinical Studies of the Healing of Tuberculosis: I. Ab-
sorption of Pulmonary Deposits,” and demonstrated the importance of
correlating serial clinical and radiologic findings in the treatment of
tuberculosis (70). This paper revealed that pulmonary tuberculosis can
heal by resolution, in addition to fibrosis and calcification, the more
commonly recognized modes of healing. In his ACCA Memorial to
J. Burns Amberson, Dr. George W. Wright described him as “a schol-
arly, gentle person. . .a teacher par excellence, a superb clinician, and
a compassionate physician” (71). This is an apt description of someone
well-known to me, as Dr. Amberson was, after all, my grandfather.
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DISCUSSION
Boxer, Ann Arbor: What is the mechanism by which annexin induces fusion? And

my other question, does annexin II play a role in the periodic fever syndromes?
Hajjar, New York: So, Larry we don’t know whether it plays a role in periodic fever

syndromes. I think that might be a very interesting thing to investigate. There are
actually a number of questions that have come to mind, and we have to prioritize them.
But I think that would be very interesting. And your other question was about the
mechanism by which it induces inflammation. What we think is that its normal function
is to maintain the integrity of the lysosome. And when the lysosomal contents leak into
the cytoplasm, that induces assembly of the inflammasome, and we get all these down-
stream events and secretion of cytokines.

Schuster, New York: Have you had a chance to try blocking antibodies in animal
models of diabetic retinopathy. And secondly, not all endothelia are the same, so what is
distribution of annexin across the arterial and then the venous endothelium?

Hajjar, New York: The distribution of annexin II; we find it in every endothelial cell
that we have looked at throughout the body. So we think that it’s fairly ubiquitously
distributed. We have a panel of antibodies that we have developed with some collabo-
rators and we are getting ready to test those in mice.

Hochberg, Baltimore: Is there any role for cyclo-oxygenase enzymes in the expres-
sion of annexin on the cell membrane and its intracellular location to the lysosomal
membrane?

Hajjar, New York: The answer is we don’t know.
Wenzel, Richmond: Have you looked at drugs that might block the inflammasome

specifically and see what happens to the activity or to the levels of annexin in either
sepsis or the periodic fever or something related?

Hajjar, New York: We have another model of inflammatory bowel disease that we
have been working on, and I didn’t think I could fit that into the 12 minutes. But
essentially we have used two inhibitors of inflammasome activation in DSS-induced
inflammatory bowel disease in the mouse, and in both cases the increased severity that
we see in the knockout reverts to the level of disease we see in the wild type. So that
would confirm your hypothesis.
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